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Jaehoon Kang
(Joint work with Soobin Cho and Panki Kim)

Seoul National University

14th Workshop on Markov Processes and Related Topics

July 19, 2018



Isotropic unimodal Lévy processes

Definition
A measure m(dx) on Rd is called isotropic unimodal if m(dx) is absolutely
continuous on Rd \ {0} with a radial and radially non-increasing density.

A Lévy process X is called isotropic unimodal if a transition probability
p(t, dx) = P(Xt ∈ dx) is isotropic unimodal, for all t > 0.

Remark
A pure jump Lévy process X is isotropic unimodal if and only if its Lévy measure
ν(dx) is isotropic unimodal.

Let ψ be the Lévy exponent of pure jump isotropic unimodal Lévy process. Then,

ψ(ξ) =

ˆ
Rd

(
1− cos(ξ · x)

)
ν(|x|)dx, (1)

where ν : (0,∞)→ [0,∞) is non-increasing function satisfying
ˆ
Rd

min{1, |x|2}ν(|x|)dx <∞. (2)

Note that ψ is also radial function.

Conversely, for any non-increasing function ν satisfying (2), there is an isotropic
unimodal Lévy process X with Lévy exponent ψ which is of the form (1).
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Let ψ be the Lévy exponent of pure jump isotropic unimodal Lévy process. Then,
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Subordinate Brownian motion (SBM)

I Let B = (Bt, t ≥ 0) be a Brownian motion in Rd, and S = (St, t ≥ 0) be a
subordinator which is independent of B. The process X = (Xt : t ≥ 0) defined
by

Xt = BSt

is a rotationally invariant Lévy process in Rd and is called a subordinate
Brownian motion (SBM).

I Let φ be the Laplace exponent of S. That is,

E[exp{−λSt}] = exp{−tφ(λ)}, λ > 0.

Then, it is known that φ is a Bernstein function. i.e., φ is smooth function that
satisfies

(−1)nφ(n) ≤ 0, for all n ≥ 1.

I The Lévy exponent ψ is given by ψ(ξ) = φ(|ξ|2).



I Every Bernstein function with φ(0+) = 0 has a representation

φ(λ) = bλ+

ˆ ∞
0

(1− e−λt)µ(dt),

where b ≥ 0, and µ(dt) is a measure satisfying
ˆ ∞

0
min{1, t}µ(dt) <∞ ,

which is called the Lévy measure of φ.

I The transition density of X is defined by

p(t, x) =

ˆ ∞
0

(4πs)−d/2 exp
(
−|x|

2

4s

)
P(St ∈ ds).

I The Lévy measure ν(dx) of X has a density ν(|x|), where

ν(r) =

ˆ ∞
0

(4πt)−d/2 exp
(
− r2

4t

)
µ(dt).



Auxiliary functions

For two functions f , g ≥ 0, f � g means there exists c > 0 such that c−1 ≤ f/g ≤ c.
For a, b ∈ R, a ∧ b := min{a, b}.

Let X be a pure jump isotropic unimodal Lévy process with Lévy measure ν(|x|)dx.
For r > 0, we define

K(r) := r−2
ˆ
|y|≤r
|y|2 ν(y)dy, h(r) := r−2

ˆ
Rd

(
r2 ∧ |y|2

)
ν(y)dy.

Since ν is non-increasing, we have

K(r) ≥ cν(r)r−2
ˆ r

0
sd+1ds = c(d + 2)−1rdν(r).

Then,
ψ(r−1) � h(r), r > 0.



Auxiliary functions

For two functions f , g ≥ 0, f � g means there exists c > 0 such that c−1 ≤ f/g ≤ c.
For a, b ∈ R, a ∧ b := min{a, b}.

Let X be a pure jump isotropic unimodal Lévy process with Lévy measure ν(|x|)dx.
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Weak scaling condition

Suppose g is a function from (0,∞) to (0,∞). Let a ≥ 0, α ∈ [0, 2], and
0 < c ≤ 1 ≤ C.

I We say that g satisfies weak lower scaling condition near∞ with index α if

g(λr)
g(r)

≥ cλα for all λ ≥ 1, r > a.

We also say that g satisfies La(α, c).

I We say that g satisfies weak upper scaling condition near∞ with index α if

g(λr)
g(r)

≤ Cλα for all λ ≥ 1, r > a.

We also say that g satisfies Ua(α,C).

I When g satisfies Ua(α,C) (resp. La(α, c)) with a = 0, then we say that g
satisfies the global weak upper scaling condition U(α,C) (resp. the global weak
lower scaling condition L(α, c).)



Suppose that X is a pure jump isotropic unimodal Lévy process whose Lévy
exponent ψ satisfies L(α1, c) and U(α2,C). Consider the following three cases:

(Case1) 0 < α1 ≤ α2 < 2;

Ex) ψ(ξ) = |ξ|α for 0 < α < 2,

ψ(ξ) = |ξ|α + |ξ|γ for 0 < α ≤ γ < 2;

(Case2) α2 = 2;

Ex) ψ(ξ) =
|ξ|2

log(1 + |ξ|2) − 1,

ψ(ξ) =
|ξ|2

log(1 + |ξ|α)
for 0 < α < 2;

(Case3) α1 = 0.

Ex) ψ(ξ) = (log(1 + |ξ|α))γ for α ∈ (0, 2] and γ ∈ (0, 1],

ψ(ξ) = log(1 + log(1 + |ξ|α)) for α ∈ (0, 2].



Dirichlet heat kernel

Let X be a discontinuous Markov process in Rd with the infinitesimal generator L.
We assume Px(Xt ∈ dy) is absolutely continuous with respect to Lebesgue measure
in Rd.

Let D ⊂ Rd be an open set and XD be a subprocess of X killed upon leaving D and
pD(t, x, y) be a transition density of XD. Then pD(t, x, y) describes the distribution of
XD, i.e., Px(XD

t ∈ A) =
´

A pD(t, x, y)dy.

An infinitesimal generator L|D of XD is the infinitesimal generator L with zero
exterior condition. pD(t, x, y) is also called the Dirichlet heat kernel for L|D since

u(t, x) :=

ˆ
Rd

pD(t, x, y)f (y)dy

is the solution to exterior Dirichlet problem:{
Lu = ∂tu, u(0, x) = f (x) on D,
u = 0 on Dc.

Note that if X is a symmetric pure jump Lévy process, then

Lu(x) =

ˆ
Rd

(
u(x + y)− u(x)−∇u · y1{|y|<1}

)
ν(dy), u ∈ C2

c .
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Lu(x) =

ˆ
Rd

(
u(x + y)− u(x)−∇u · y1{|y|<1}

)
ν(dy), u ∈ C2

c .



Dirichlet heat kernel

Let X be a discontinuous Markov process in Rd with the infinitesimal generator L.
We assume Px(Xt ∈ dy) is absolutely continuous with respect to Lebesgue measure
in Rd.

Let D ⊂ Rd be an open set and XD be a subprocess of X killed upon leaving D and
pD(t, x, y) be a transition density of XD. Then pD(t, x, y) describes the distribution of
XD, i.e., Px(XD

t ∈ A) =
´

A pD(t, x, y)dy.

An infinitesimal generator L|D of XD is the infinitesimal generator L with zero
exterior condition. pD(t, x, y) is also called the Dirichlet heat kernel for L|D since

u(t, x) :=

ˆ
Rd

pD(t, x, y)f (y)dy

is the solution to exterior Dirichlet problem:{
Lu = ∂tu, u(0, x) = f (x) on D,
u = 0 on Dc.

Note that if X is a symmetric pure jump Lévy process, then
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Dirichlet heat kernel estimates(DHKE)

For open set D, let δD(x) = dist(x, ∂D) and τD := inf{t > 0 : Xt /∈ D}.

Chen, Kim and Song (’10)
Let T > 0 and X be an α-stable process for α ∈ (0, 2) in C1,1 open set D. Then, for
(t, x, y) ∈ (0, T]× D× D,

pD(t, x, y) �
(

1 ∧ δD(x)α/2

√
t

)(
1 ∧ δD(y)α/2

√
t

)(
t−d/α ∧ t

|x− y|d+α

)
.

Bogdan, Grzywny and Ryznar (’10)
A Varopoulos type factorization estimate for symmetric stable process in κ-fat open
set: for (t, x, y) ∈ (0, T]× D× D,

pD(t, x, y) � Px(τD > t)Py(τD > t)p(t, x, y).



Extensions

I Chen, Kim and Song (’10): DHKE for censored stable-like processes in C1,1

open sets.
I Chen and Tokle (’11): DHKE for α- stable process in exterior C1,1 open sets

and half-space-like open sets.
I Chen, Kim and Song (’14): A Varopoulos type factorization estimate for a

rotationally symmetric Lévy processes in κ-fat open sets and DHKE in C1,1

open sets.
I Bogdan, Grzywny and Ryznar (’14): DHKE for the isotropic unimodal Lévy

process whose Lévy exponent satisfies weak scaling condition in C1,1 open sets.
I Kim and Kim (’14): DHKE for symmetric Markov processes dominated by

stable-like processes in C1,ρ open sets.
I Grzywny, Kim and Kim (’15): DHKE for symmetric Markov processes

dominated by isotropic unimodal Lévy processes with weak scaling conditions
in C1,ρ open sets.

I Chen, Kim and Song (’16): DHKE for SBM with Gaussian components in C1,1

open sets.
I Chen and Kim (’16): DHKE for symmetric Lévy processes in half space.
I Kim and Mimica (’17): DHKE for SBM whose upper scaling index of Lévy

exponent is not necessarily strictly below 2 when D is C1,1 open set.



Slowly varying function and de Haan class

For given function ` : (0,∞)→ (0,∞), we say that ` is slowly varying function at
∞ (resp. at 0) if for all λ > 0

lim
x→∞

(resp. x→0)

`(λx)

`(x)
= 1.

We denoteR∞0 (resp.R0
0) by the class of slowly varying functions at∞ (resp. 0).

For ` ∈ R∞0 (resp.R0
0), we denote Π∞` (resp. Π0

`) by the class of real-valued
measurable function f on [c,∞) (resp. (0, c)) such that for all λ > 0

lim
x→∞

(resp. x→0)

f (λx)− f (x)

`(x)
= logλ.

Π∞` (resp. Π0
`) is called de Haan class at∞ (resp. 0) determined by `. Note that

| f | ∈ R∞0 for f ∈ Π∞` .
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Results in [Grzywny, Ryznar and Trojan(’18)]

Let Y be a pure jump isotropic unimodal Lévy process on Rd with Lévy exponent ϕ
and Lévy measure σ.

Proposition
There exist C, c > 0 such that for all t > 0 and r > 0

C−1e−c−1tϕ(r−1) ≤ Px(τB(x,r) > t) ≤ Ce−ctϕ(r−1).

Proposition
There exist C, c > 0 such that for all t > 0 and x ∈ Rd

pY(t, x) ≥ Ctσ(x)e−ctϕ(|x|−1).

Theorem
There exist C > 0 such that for all t > 0 and x ∈ Rd \ {0},

pY(t, x) ≤ Ct|x|−dKY(|x|).



Heat kernel estimates(Case3)

Theorem [Grzywny, Ryznar and Trojan(’18)]
Suppose ψ ∈ Π∞` for bounded ` ∈ R∞0 . Then there are r0, t0 > 0 such that for all
t ∈ (0, t0) and 0 < |x| ≤ r0,

p(t, x) � t|x|−d`(|x|−1)e−tψ(|x|−1).

Corollary [Grzywny, Ryznar and Trojan(’18)]
Suppose ψ ∈ Π∞` for bounded ` ∈ R∞0 . Then, there is t∗ > 0 such that for all
t ∈ (0, t∗),

sup
x∈Rd

p(t, x) =∞.
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Assumptions

(A-1) limr→0
ν(r)

rd`(r−1)
= c for bounded ` ∈ R∞0 and c > 0;

(A-2) The Lévy measure ν is infinite;

(A-3) r 7→ ν(r) is differentiable and r 7→ −ν′(r)/r is decreasing;

(A-4) There exists a constant C0 > 0 such that

ν(r) ≤ C0ν(r + 1) for all r ≥ 1;

(A-5) There exist constants R∞,M0 > 0 and α < 2 such that

ν(s)
ν(r)

≤ M0

( s
r

)−d−α
for every R∞ < s < r <∞.



Remark

I (A-1) is equivalent to the condition ψ ∈ Π∞c′` for c′ > 0;

I Every subordinate Brownian motion satisfies (A-3).

I (A-1), (A-2) and (A-4) imply the Harnack inequality and boundary Harnack
principle.

I (A-1)–(A-4) give the gradient estimates of harmonic functions.

I We will use (A-5) only if D is unbounded.

I (A-5) is equivalent to the condition c−1rdν(r) ≤ K(r) ≤ crdν(r) for all
r > R∞. Also, (A-5) implies ν(r) ≤ M02d+αν(2r) for all r > R∞. Thus, (A-5)
implies (A-4).



Let diag = {(x, x) : x ∈ Rd}. Then, we obtain the following:

Let T > 0. Suppose that X is an isotropic unimodal Lévy process on Rd with Lévy
density ν satisfying (A-1). Then there exist C, b, b̄ > 0 such that for every
(t, x, y) ∈ (0, T]× (Rd × Rd \ diag),

p(t, x, y) ≥ C−1tν(|x− y|)e−btψ(|x−y|−1)

and

p(t, x, y) ≤ Ct
K(|x− y|)
|x− y|d e−b̄tψ(|x−y|−1).

Thus, if K(r) � rdν(r) for r > 0, we have for (t, x, y) ∈ (0, T]× (Rd × Rd \ diag),

C−1tν(|x− y|)e−btψ(|x−y|−1) ≤ p(t, x, y) ≤ Ctν(|x− y|)e−b̄tψ(|x−y|−1).



Survival probability estimates

Proposition [Cho, K and Kim]
Suppose (A-1)–(A-4) holds. Let T > 0 and D be a C1,ρ open set in Rd for ρ ∈ (0, 1].
Then,

Px(τD > t) �
(

1 ∧ ψ(δD(x)−1)−1

t

)1/2

,

for all (t, x) ∈ (0, T]× D.

Idea of Proof. Since we consider C1,ρ open set with ρ ∈ (0, 1], we use the approach
in Grzywny, Kim and Kim (’15). But, in Grzywny, Kim and Kim (’15), they assumed
that weak lower scaling condition for the small jumps. Since we do not have such
lower scaling condition in our case, their approach could not be applied directly. To
overcome this difficulty, we use Harnack inequality and boundary Harnack principle
to obtain survival probability estimates, which were not used in Grzywny, Kim and
Kim (’15).



Survival probability estimates

Proposition [Cho, K and Kim]
Suppose (A-1)–(A-4) holds. Let T > 0 and D be a C1,ρ open set in Rd for ρ ∈ (0, 1].
Then,

Px(τD > t) �
(

1 ∧ ψ(δD(x)−1)−1

t

)1/2

,

for all (t, x) ∈ (0, T]× D.

Idea of Proof. Since we consider C1,ρ open set with ρ ∈ (0, 1], we use the approach
in Grzywny, Kim and Kim (’15). But, in Grzywny, Kim and Kim (’15), they assumed
that weak lower scaling condition for the small jumps. Since we do not have such
lower scaling condition in our case, their approach could not be applied directly. To
overcome this difficulty, we use Harnack inequality and boundary Harnack principle
to obtain survival probability estimates, which were not used in Grzywny, Kim and
Kim (’15).



Dirichlet heat kernel estimates (Case 3)

Theorem[Cho, K and Kim]
Suppose that X is an isotropic unimodal Lévy process with Lévy exponent ψ and
Lévy measure ν satisfying conditions (A-1)–(A-4). For 0 < ρ ≤ 1, let D be a C1,ρ

open subset of Rd with characteristics (R1,Λ). If D is unbounded, we further assume
that (A-5) holds. Then, for T > 0, there exist positive constants ci (i = 1, 2, 3, 4),
which depend on ρ,R1,Λ, T, d, `,C0,M0 such that the following estimate holds:

(i) For all (t, x, y) ∈ (0, T]× D× D,

pD(t, x, y) ≤ c1

(
1 ∧ ψ(δD(x)−1)−1

t

)1/2(
1 ∧ ψ(δD(y)−1)−1

t

)1/2

tν(|x−y|)e−c2tψ(|x−y|−1).

(ii) For all (t, x, y) ∈ (0, T]× D× D,

pD(t, x, y) ≥ c3

(
1 ∧ ψ(δD(x)−1)−1

t

)1/2(
1 ∧ ψ(δD(y)−1)−1

t

)1/2

tν(|x−y|)e−c4tψ(|x−y|−1).



Difficulties in the proof. For the lower bound, if ψ satisfies the weak lower scaling
condition, then the following argument can be applied:

pD(t, x, y) =

ˆ
D×D

pD(t/3, x, u)pD(t/3, u, v)pD(t/3, v, y)dudv

≥ inf
(u,v)∈B(Ax,κr/6)×B(Ay,κr/6)

pD(t/3, u, v)

×
ˆ

B(Ax,κr/6)
pD(t/3, x, u)du

ˆ
B(Ay,κr/6)

pD(t/3, v, y)dv,

where r = ψ∗(t−1)−1

ψ∗(T−1)−1 R and for some Ax = Ax(r),Ay = Ay(r) ∈ D.

In our case, the above method cannot be applied directly. Thus, in our case, we use

pD(t, x, y) ≥ ctν(|x− y|)Px(τU > t)Py(τV > t),

for some proper open subset of U,V ⊂ D.



Example 1
Let Y be an isotropic α-stable process and S be a subordinator with the Laplace
exponent φ(λ) = (log(1 + λ))γ for γ ∈ (0, 1]. Then X = (Xt : t ≥ 0) where
Xt = YSt has the Lévy-Khintchine exponent

ψ(ξ) = (log(1 + |ξ|α))γ , for α ∈ (0, 2], γ ∈ (0, 1], αγ < 2.

Then, ψ ∈ Π∞` for

`(λ) = αγγ(log(1 + λα))γ−1, λ > 1.

Thus, for T > 0 and C1,ρ open set D, we have

pD(t, x, y) ≤ c1

(
1 ∧ (log(1 + δD(x)−α))−γ/2

√
t

)(
1 ∧ (log(1 + δD(y)−α))−γ/2

√
t

)
× t
|x− y|d (log(1 + |x− y|−α))γ−1e−c2t(log(1+|x−y|−α))γ

and

pD(t, x, y) ≥ c3

(
1 ∧ (log(1 + δD(x)−α))−γ/2

√
t

)(
1 ∧ (log(1 + δD(y)−α))−γ/2

√
t

)
× t
|x− y|d (log(1 + |x− y|−α))γ−1e−c4t(log(1+|x−y|−α))γ .



Example 2
Let Y be an isotropic α-stable process and S be an iterated geometric subordinator
with the Laplace exponent φ(λ) = log

(
1 + log(1 + λ)

)
. Then X = (Xt : t ≥ 0)

where Xt = YSt has the Lévy-Khintchine exponent

ψ(x) = log
(
1 + log(1 + |x|α)

)
, for α ∈ (0, 2).

Then, ψ ∈ Π∞` for

`(λ) =
(
1 + log(1 + λα)

)−1
, λ ≥ 1.

Thus, for T > 0 and C1,ρ open set D, there exist ci (i = 1, 2, 3, 4) such that

pD(t, x, y)

≤ c1

(
1 ∧ (log(1 + log(1 + δD(x)−α)))−1/2

√
t

)(
1 ∧ (log(1 + log(1 + δD(y)−α)))−1/2

√
t

)
× t|x|−d(1 + log(1 + |x− y|−1)

)−1−c2t

and

pD(t, x, y)

≥ c3

(
1 ∧ (log(1 + log(1 + δD(x)−α)))−1/2

√
t

)(
1 ∧ (log(1 + log(1 + δD(y)−α)))−1/2

√
t

)
× t|x|−d(1 + log(1 + |x− y|−1)

)−1−c4t
.
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